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Abstract

A numerical technique is developed for solving coupled electrochemical reaction—diffusion equations. Through analyzing the
nonlinearity of the problem, a trial and error iterating procedure is constructed. The coefficient matrix is arranged as a tridiagonal form with
elements of block matrix and is decomposed to LU form. A compact forward and backward substitution algorithm based on the shift of
inversing block matrix by Gauss—Jordan full pivoting is developed. A large number of node points is required to converge the calculation.
Computation experiences show that the iteration converges very quickly. The effects of inner diffusion on the electrochemical reaction are
analyzed by numerical solutions. © 2002 Published by Elsevier Science B.V.
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1. Introduction

Industrial chemical reactions are usually accompanied
with mass and energy transfer, either homogeneously or
heterogeneously. Mathematical modeling for these pro-
cesses is based on material and energy balance. One can
generate a set of differential equations known as the reac-
tion—diffusion problem. Owing to the strong nonlinearity of
the reaction rate, mainly from the effect of temperature,
reaction—diffusion equations are paid more attention in
analyzing and designing chemical and catalytic reactors
and are the major role in analyzing the nonlinear dynamic
behaviors in reactor engineering. The same phenomena exist
in electrochemical processes, with the add complexity of a
varying potential field, and considerable research has been
reviewed for electrochemical reactions occurring in the
porous electrode [1].

Newman discussed the numerical solution of boundary-
value problems consisting coupled ordinary differential
equations which one can often met in chemical engineering
science, and developed a unique technique to solve coupled,
linear differential equations [2—4]. In his procedure, a large,
sparse matrix was collapsed to a tridiagonal matrix with
elements of block matrixes, which make it easy to be
inversed in solving the algebraic equations transformed from
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the original differential equations. Accordingly, the subrou-
tine in his numerical method is called Newman’s Band(j).
White discussed Newman’s method, and promoted this
technique for wide application [5-7]. However, for solving
reaction—diffusion equations—the nonlinear two-point
boundary value problem, respective trial and error algo-
rithms are needed. Shooting methods, such as Runge—Kutta
integration scheme, is a marching technique that must be
backwards processed from end point to beginning point to
avoid inherent instability. This method is commonly used,
but it depends on a proper choice of the initial value at the
ending point. Linearizing the nonlinear kinetics term that
convert the nonlinear differential equations into a linear one
is called the linearization trial-and-error technique, but it
does not guarantee that all steady state solutions can be
determined. Compared with these two methods, transform-
ing the nonlinear differential equations into nonlinear alge-
braic equations that are then solved by the Newton method
did not receive the appropriate attention because the calcu-
lating time and storage is greater.

In this paper, we extend Newmans’s matrix method to
solve coupled electrochemical reaction—diffusion equa-
tions—a coupled high nonlinear two-point boundary value
problem that is encountered in modeling of a fuel cell
catalyst layer. Based on Taylor expansion, a trial and error
iteraction algorithm is developed for solving the nonlinear
algebraic equations transformed from the electrochemical
reaction—diffusion equations. Owing to the adoption of
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Nomenclature

a specific interfacial area (cm™ )

Co dimensionless form of Cy+ (co = Cy+/ CEIZ)

c dimensionless form of Cy, (c; = Cn,/Cy,)

ca dimensionless electric potential in the solid
matrix phase (c; = nf¢,)

c3 dimensionless electric potential in the pore ionic
phase (3 = nfh,)

Cy+ effective concentration of proton per unit volume
of solution (mol cm*3)

Cu, effective concentration of hydrogen per unit
volume of solution (mol cm ™)

C%Z initial effective concentration of hydrogen
(mol cm_3)

Dy, effective diffusion coefficient of hydrogen in pore
phase (cm2 sfl)

EY formal potential (V)

f constant ( f = F/RT (V™))

F Faraday’s constant (96485 C eq.” ")

i total current density leaving the matrix phase
(A cmfz)

i superficial electronic current density in the
matrix (A cm™?)

i superficial ionic current density in pore phase
(A cm_z)

I..n current density of fuel cell, defined as positive
(A cm ™)

K° heterogeneous rate constant for hydrogen oxidation
(cm sfl)

k, dimensionless parameter (k; = nfll.e /o)

ko dimensionless parameter (k, = nfll ey /x)

[ thickness of anode catalyst layer (cm)

n =2 number of electrons transferred in electrode
reaction (=2)

Nu, superficial flux density of hydrogen
(mol cm 2 s_l)

R universal gas constant (8.314J mol ! Kil)

Ry, electrode reaction rate of hydrogen, defined as
positive (mol cm s

T absolute temperature (K)

U  dimensionless formal potential (U = nfE")

b dimensionless form of distance through porous
electrode (x = X/1)

X distance through porous electrode (cm)

Greek symbols

o transfer coefficient

ol electric potential in the solid matrix phase (V)

¢» electric potential in the pore ionic phase (V)

@ Thiele modulus (¢* = al’k’/Dy,)

@,  dimensionless parameter (9] = an’fFk°I*C}} /o)

D, dimensionless parameter ((p% = an2ka012C2Iz /K)

K effective conductivity of the pore ionic (proton)
phase (Q ' ecm™")

o effective conductivity of the solid matrix Q@ 'em™ Y

Newman’s unique method, in each iteration loop a compact
forward substitution can be processed. In each forward or
backward substitution, we use Gauss—Jordan full pivoting
technique to guarantee the numerical stability. The whole
computing is very fast, even though we set 2000 node points
to make the substitution effectively. For a general case of
an electrochemical reaction—diffusion process in a fuel cell
catalyst layer, just two iteration loops can converge the
solution. Using this method to study the effect of Thiele
modulus on the electrochemical reaction—diffusion process,
some intrinsic phenomena due to the nonlinear behavior of
the system is found by numerical solution that is beneficial to
analyze and scale-up a fuel cell system.

2. Model equation

We consider for the isothermal hydrogen oxidation reac-
tion occurring in a porous catalyst layer of a fuel cell anode.

H,=2H" + 2¢~ (1)

A schematic representation of it is shown in Fig. 1. The
catalyst layer is viewed as a continuum of two phases, each
phase either a pure ionic or electronic conductor. The ionic
phase is considered a cationic selective polymer, such as
Nafion. Therefore, the proton concentration throughout the
catalyst layer is fixed. This uniform electrolyte concentra-
tion means the superficial current density in the pore ionic
phase is due only to ion migration. This is represented
mathematically as

392
dx

The rate at which ionic current enters the pore solution, di,/
dX, is proportional to the reaction rate on a volumetric basis
that is expressed by Butler—Volmer expression (defining
anodic current as positive) [8]

di : v

az = nFRy, = anFk°[Cy,e!1 =W (#1=027E7)

ip =

(@)

_ CHJre*“”f(‘bl*‘/’z*Eo/)] (3)

The movement of electrons in the solid matrix phase of the
porous electrode is governed by Ohm’s law

_o3¢
dx
The consequence of electroneutrality is that the divergence
of the total current density is zero.
di dip  dip
dX dx " dx
The flux of dissolved hydrogen in the porous anode is
determined by diffusion

i =

“)

0 ®)

(6)

, = —
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Fig. 1. Hydrogen oxidation in a fuel cell anode.

Material balance for this reaction—diffusion process can be
modeled according to equation of continuity at steady state [9]

dNy,
1104
Substituting Eq. (3), (6) into Eq. (7) yields

= Ry, @)

2 /
DH d CHZ — ak()[c e(l—“)"f(d’l_d)z_EO)
e e

_ CHJre*“”f(?bl*sz*E«)l)] (8)
Differentiating Eqs. (2) and (4) and substituting Eq. (3) into

the resulting equation gives

J—dzd)l = nFakO[C e(1*“>rzf(¢r¢rE°/>
x> "

_ Cmeﬂﬂf(tf)] *¢2*E°/)] 9)

P2 kO [Cyy o)
K = —nFak’|Cie

_ CH* e*“”f@’l *¢2*E0/)} (10)

Boundary conditions:

1. @ X=0,
Cn, = CY, (11)
d¢1 Icell
- feell 12
dx o (12)
¢y = (13)
2. @ X =1,
dC,
=0 14
e (14)
dg,
Fl_9 15
e (15)
d¢2 Icell
2 el 16
e . (16)

Setting the following dimensionless variables and parameters

CH+ CH2

= — Cl = —
0 > (U

Ch, Ch,

c =nfdy, 3 =nfo,,

€o

X ) K02 . o
x=-, d°=a (Thiele modulus), U=nfE",
H,
) anszkOlzcg2 o — anszkOlzCEIZ
=T 2=
n n
ki = iZlcelh ky = iZlceu
o K

Then Eqgs. (8), (10) and (11) are reduced to the dimensionless
form

d2C1

7= @Z[Cle(lﬁ)(CzﬁrU) _ Coe*a(szCrU)] (17)
a2

dxCZz — @%[Cle(lfﬁ)(CZ*Cst) _ Coe*“(czfﬁfU)] (18)
d e e

dxc23 = —B3fci el M@l — gpemolamaU)] (19)

Boundary conditions:

1. @ x=0,
cp=1 (20)
dC2
= —k 21
1 1 2D
c3=0 (22)
2. @ x=1,
dCl
-0 23
1 (23)
dCz
— =0 24
] (24)
dC3
— —k 25
1 2 (25)

Although the above model Egs. (17)—(25) are for an
isothermal system, due to the unique nonlinear character-
istics of the electrochemical reaction term that is similar
to the effect of temperature on a chemical reaction rate,
the numerical solving method for these electrochemical
reaction—diffusion equations can be transformed to study
non-isothermal problems.
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3. Numerical solution

For solving the model Eqs. (17)—(25), they are cast into
sets of nonlinear algebraic equations approximated by
finite difference. Then an iterative algorithm is constructed
based on the Taylor expansion. However, if one adds the
Egs. (17)—(19) together to try to eliminate the nonlinear
term, the computation is not stable. Analyzing the com-

only on the variables at three points. If the left-hand term
is expressed as F ; then the Taylor series expands it to
accuracy O(hz) as

Fle(cl(j - 1)76'1(.].)7C(j+ 1),6‘2(j),6‘3(j))
=c(j=1)=2(j) + 4+ 1)
— W22 [C?(j)e(l—0)[L'2(.I')—Cg(j)—u] _ Coe—a[cﬁ_’(j)—cg’(j)—U]}

puting process on a microcomputer with eight word bits N T OF ; N0/ OF
for a double precision real showed that the block +lal=D=¢( 1)]6c1~_]-,1 O—HCI(]) ci(J)] dci il
matrixes were ill-conditioned. The condition numbers OF: : OF
. . . : 0 LJj ; 0 - LJ
are too large to inverse the coefficient block matrixes +ler(j+1)—ci(j+1)] +ea(f) —er (N5
. C1j+11o deajly
correctly due to the error accumulation even for the second oF
node point. + [e3(j) — A3)] Lil _ o Q27)
Therefore, at each node point except the boundary points, dcs il

the second-order derivatives can be approximated by three
point central difference accurate to O(h%). For example,
Eq. (17) is approximated as

a(j—1) =2a() +a(+1)
_ h2q§2(cl(j)e(lfa)[w(i)*%(i)*U] _ Coe*a[Cz(i)*m(J')*U]) -0

Substituting corresponding partial derivatives and intro-
ducing

ro = e1=9S0)-S0)-U].
rio = ¢2(j)e1 DR ~e50)=U] _ ¢ p=aleh()=56)~U]

roy = (1 = a)0()el - IE0-80-U] | 5 o=20)-40)-0]

(26)
(28)
If there are enough node points, we can suppose that the
difference equation at node point j, such as Eq. (26), depends it can be simplified as a more compact matrix form.
Cl,j—1 Cl,j Cl,j+1
[1 0 0| cojmr | +[-Q2+W2P*ry) —W2®*r,, W1, ]| c2; | +[1 0 O] 2
€31 C3,j C3,j+1
Lj
=[-120%ry —120%r, KOr, ]| &, | + PP, 0<j<N (29)
A
3,

In the same way, model Eqgs. (18) and (19) can be approximated as Egs. (30) and (31), respectively,

C1,j-1 Cl,j C1,j+1
[0 1 0] cojmr | +[—H2®Irg —(2+ K2 Dir,) W ®ir, || c2j | +[0 1 0]] c2 54
C3,j—1 C3j C3j+1
)
=[R2y —Wr, Bdr,]| S, | +FPP, 0<j<N (30)
0
G,
Cl,j—1 Cl,j Cl,j+1
[0 0 1] €21 +[h2(P§r0 h2<I>§rCU —(2—|—h2¢%rm)] C2,j +[0 0 1] €2,j+1
C3,j—1 C3j C3j+1
C?,j
=[R®ry W®r, —HOr,]| S | — PP, 0<j<N, (31)
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Letting
C(j)=(c1; ¢ )", 0<j<N (32)

then Egs. (29)-(31) become
A()C(— 1) +B()C(j) + D()C(+ 1) = G()),

0<j<N, (33)
in which
100
Aj)=10 1 0],
00 1
—(24+1d*r)  —h*dr, W d%r,,
Bi)=| @ @R, R, |
h*®3rg R ®5re,  —(2+hPir,,)
1 00
DiH=[0o 1 of,
00 1
—ROr, —WDr, B, \ [
G(j) = | —n*diry —Wdir, Hdir, C(z)_j
Woirg W, —ROr ) \ &,
h2¢2rjo
+ | Roir (34)
—h>®iryo

Two-point boundary conditions are approximated by
three point forward or backward difference accurate to
O(h*) and are also expressed as a compact matrix form

B(0)C(0) + D(0)C(1) + XC(2) = G(0), j=0 (35)

and
YC(N —2)+A(N)C(N — 1) + B(N)C(N) = G(N),
J=N (36)
where
1 0 0 0 O
BO)=[0 3 0], DO)=|(0 -4 0],
0 0 1 0 O
0 0 O 1
X=101 0], G(0) = | 2hk, 37
0 0 O 0
1 0 0 -4 0 0
Y=101 0], A(N) = 0o -4 0 |,
0 0 1 0 0o -4
300 0
B(N)={0 3 0|, G(N) = 0 (38)
0 3 —2hk>

Egs. (33), (35) and (36) can be rewritten as a matrix form
[B(0) D(0) X
A(1) B(1) D(1)

AG)  B() D(j)

A(N.— 1) B(N'— 1) D(N—1)

I Y ANN)  B(N) |
[ Cco) 1 [ GO ]
c(1) G(1)
cG) |=1] GO) (39)
C(N; 1) G(N’— 1)
c(N) | L GW)

The block matrixes B(j) and vectors G(j) at node points
0 < j < N arenotdetermined due to the variables at expanded
points (with superscript 0) being unknown. As a result, the
tridiagonal matrix algebraic Eq. (39) cannot be solved directly.
But if these unknown values at expanded points are guessed as
trial values, then Eq. (39) can be solved. For a tridiagonal
matrix algebraic equation, a compact forward and backward
substitution algorithm can solve it quickly. This algorithm, at
first, decomposes the tridiagonal matrix into a LU form. Then
in the forward substituting, an intermediate vector will be
acquired, and in the backward substituting, the variable vector
can be obtained. In all the process of LU decomposition and
forward and backward substitution, the Gauss—Jordan full
pivoting algorithm is needed to inverse the block matrixes.
Then the block matrix in the lower and upper matrix, the
intermediate vector, and, at last, the variable vector can be
solved. These solved variables are based on guessed values,
they are not the real solution for the problem. They are set as
new guessed values in the block matrixes B(j) and G(j) and
reproduce the whole procedure. The iteration will not stop
until the setting accuracy is reached, which makes the solu-
tions satisfy the whole difference equations at each node point.

The procedure is illustrated as follows. When the values
for determining the B(j) and G(j) are guessed, then the
coefficient matrix in Eq. (39) can be decomposed

[B(0) D(0) X
A(1) B(1) D(1)

A()  B() D(j)

A(N.— 1) B(N.— 1) D(N—1)
Y A(N) B(N)
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B(0) -
A(1) B(1)
= A(j) B(j)
AN—1) B(N—1)
I Y(N) ~ A(N) B(N)]
[1 D(0) X i
I D(1)
} D(j) (40)
I D(N—-1)
L I ]

Through the shift of matrixes, the block matrix in the L and
U matrixes can be solved. For j = 0, 1, we have

B(0) = B(0), X=B
(41)

ol
~
=
—

= B(1) — A1)

: - B ' (HA(HX (42)

A1) =A(1),  B(1)
D(1) =B '(1)D(1)

As the same way, for other node points atj =2,...,
N -1,

A(j) =A(),  B()=B(j) —A()D( — 1),

D(j) = B~ (j)Dj) 43)
can be solved. At the last node point j = N, we obtain
Y(N) =Y, A(N) =A(N) — Y(N)D(N - 2),

B(N) = B(N) — A(N)D(N — 1) (44)

Then Eq. (41) can be solved through the solution of two
sets of matrix algebraic equations.

bS]

(1) B(1)

[ W) T [ G(0) T
w(l) G(1
Wi | =] GU) (45)
W(N.— 1) G(N.— 1)
ww) | L GIN)
w G
and
1 D) X T
1 D(1)
I D(j)
I DIN-1)
L r |
[ c0) 1 [ w(O) 7
c(1) w(1)
x| €l | =] W0 (46)
C(N-— 1) W(N.— 1)
c(N) | L W)
c w

The intermediate vector W(j), j =0,...,N in Eq. (45) can
be determined by forward substituting

w(0) = B (0)G(0) (47)
w(1) =B (1)G(1) — B~ (1A(1)W(0) (48)
W() =B '()G() - B (DAG)W(i — 1) (49)
W(N)=B"

(N)G(N) =B~ (N)Y(N)W(N - 2)
)

— B (N)A(N)W(N — (50)

With backward substituting, the solution vector C(j), j = 0,
N are solved.

C(N) = W(N) €]
C(N—1)=W(N—1)—D(N —1)C(N) (52)
C(j) = W(j) = D()C(i + 1) (53)

C(0) = W(0) — D(0)C(1) — XC(2) (54)
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The solved C(j) are as new guessed values to determine
the block matrixes B(j) and G(j), j=1,...,N — 1 and to
continually carry out the iteration, until the approximated
solutions are obtained.

4. Results and discussion
4.1. Convergence

To test the solving technique, we chose a set of physical-
chemical parameters shown in Table 1 that are common used
for hydrogen oxidation in a fuel cell anode, then the follow-
ing dimensionless model parameters are obtained

[ 057147
@* = 0.1406,

x=05  U=0,
o7 = &3 = 0.8277

Different currents density (0.2-1.6 A cm™?) at two-point
boundary that make k; and k, change between 0.2191-
1.7526 were adopted. A Fortran 95 code was developed
to do the numerical solution on a micro computer (Dell,
Dimension 4100, Pentium III, 260 MB memory). After the
number of node points was determined and a set of proper
initial values were guessed for each variables at all the node
points, the iterating process was carried out. It converged
very quickly in just two loops. The numerical results are
illustrated as Figs. 2-5.

It was found that a large number of node points, for
example, >1000, is required to converge the iteration. We set
it as 2000. Setting too many node points is the need for our
assumption in the Taylor expansion that the nonlinear
difference equation at node point j, depends only on vari-
ables at the three points. The iteration precision was chosen
as 107* The zero in the right-hand side of the sets of
nonlinear algebraic equations in the form of Eq. (26) is
approximated by this value. If all the absolute values of
computation for the terms in the left-hand side are not
>10"*, then the iteration processes stop. For the case of
2000 node points, correspondingly, there are 6000 algebraic

Table 1
Common physical-chemical parameters in modeling the hydrogen
oxidation in a fuel cell anode

Parameter Value
a(cm™ ") 250

Cy+ (mol cm ™) 04 x 107*
€Y, (mol cm™) 0.7 x 107%,0.38 x 107 for ® = 0.15
Dy, (cm?s™) 2 x107*
Leen (A cm™) 0.2-1.6

£ (cms™h 045

[ (cm) 5% 107
T (K) 353.15

U 0

o 0.5

© (Q 'em™h 0.3 x 107!
6 (Q 'em™) 03 x 107!

3
2FR,, (A/cm”)

00

Fig. 2. Distribution of electrochemical reaction rate of hydrogen along x at
different k; (current).

equations like Eq. (26) except those at the two-point bound-
ary. Like all trial and error iteration algorithm, different
initial estimations yield different results, in order to make
the solution meet the physical meanings in the system,
following current criteria are introduced in our computing
to determine the initial trial solution and check the results

4,
i1 =—0—>| =l (55)
dX [y
do,
i = - —0 (56)
dX [y,
do,
Iy = —K—— =l (57)
dX [y,

2 1 *

Fig. 3. Distribution of dimensionless hydrogen concentration ¢, along x at
different k; (current).
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00

Fig. 4. Distribution of dimensionless potential in matrix along x at
different k, (current).

)

b= 32 (58)
dX |x—o
1 q:
di

e = | az dx (59)

For Egs. (55)—(58), the five point formula of numerical
differential are adopted to calculate the potential gradient.
For Eq. (59), complex Simposon’s method is used to calcu-
late the integration along the catalyst layer. All the calcula-
tions in these five equations are based on the data obtained
from the numerical solution of the model equations.

4.2. Characteristics of electrochemical
reaction—diffusion

The characteristics of reaction—diffusion problems are
usually analyzed by the Thiele modulus @ [10]. We changed
the model parameters that is shown in Table 2 to get different
Thiele modulus @ in a range of 0.008-10, and corresponding
electrochemical Thiele modulu @; and &, in a range of
0.01-8.06 and 0.02-10.95, respectively. The numerical
solutions converge to the results very fast too, two loops
of iteration for all case. The results are showed in Figs. 6-9.

31

1 *

Fig. 5. Distribution of dimensionless potential in pore solution c; along x
at different k; (current).

4
20 x 10 ' ‘

D=0.008

-5 L

0 0.2 0.4 0.6 0.8 1

Fig. 6. Dependence of reaction rate on Thiele modulus, the parameters
corresponding to these values of @ are shown in Table 2.

When the Thiele modulus is low, such as @ = 0.008, the
resistance of diffusion can be neglected, the distributions of
reaction rate and hydrogen concentration are nearly uniform.
When the Thiele modulus becomes larger, the diffusion

Table 2

Parameters for studying the dependence of hydrogen electro-oxidation reaction—diffusion on Thiele modulus in Figs. 6-9*

@ @, @, Dy, (cm®s™") K (cms™h [ (cm) o (@ 'em™) k(@ 'em™)
0.008 0.012 0.018 2.0 x 107 0.45 0.1 x 107* 0.6 x 107! 0.3 x 107!
0.8 0.41 1.85 0.1 x 107* 0.4 x 10° 0.25 x 1074 0.3 x 107! 0.15 x 1072
3 1.41 471 0.08 x 1074 0.8 x 10? 0.6 x 107* 03 x 107! 0.268 x 1072
5 1.73 6.42 0.08 x 107* 0.8 x 10° 1.0 x 107* 0.55 x 107! 0.40 x 1072
10 8.06 10.95 0.08 x 1074 0.8 x 10? 20 x 107* 0.1 x 107! 0.55 x 1072

# Non-changing parameters: Cy+ = 0.4 x 10~ mol cm’3; Ch, = 0.65 x 10~ mol cm’3; Ieen =16 A cm’z; T=2353.15K; U =0; a=0.5.
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D=0.008

0.8

0.6

04 r

0.2

0 ! X
0 0.2 0.4 0.6 0.8 1

Fig. 7. Dependence of dimensionless hydrogen concentration on Thiele
modulus, the parameters corresponding to these values of @ are shown in
Table 2.

0.4

o3} —— ®08

0.2

0.1 1

k_
02 | = :

-0.3 : X

0 0.2 0.4 0.6 0.8 1

Fig. 8. Dependence of dimensionless potential in matrix on Thiele
modulus, the parameters corresponding to these values of @ are shown in
Table 2.

-3.5 ‘ : X

0 0.2 0.4 0.6 0.8 1

Fig. 9. Dependence of dimensionless potential in solution on Thiele
modulus, the parameters to these values of @ are shown in Table 2.

resistance increases, as a result, the reaction is not uniform
along the catalyst layer, the larger the Thiele modulus is, the
more non-uniform the reaction rate is. When the Thiele
modulus is equal to 10, the reaction rate and hydrogen
concentration decreases rapidly in the region near the sur-
face of porous catalyst layer. It should be pointed out that in
high Thiele modulus region, the rate of mass transfer by
diffusion cannot meet the rate of electrochemical reaction,
the process will lose its stability and become a dissipative
system. As the same case in the stability issues in chemical
reaction engineering, our numerical computing also found
sensitive dependence of the solution results on some para-
meters when the Thiele modulus is high. It has been reported
by alarge amount of literature that in open chemical reaction
system, especially coupled nonlinear chemical reaction and
diffusion occur simultaneously, many complex phenomena
will take place, such as multiple steady states, unstable states
and self-generated sustained oscillations. Our present work
just makes a beginning in this field, further attention should
be paid to it because the electrochemical oxidation reaction
rate of hydrogen is very fast under the catalysis of platinum
catalyst. When a fuel cell stack is needed to scale up, it is
necessary to know the dissipative behavior.

5. Conclusion

A numerical solution method is developed for coupled
electrochemical reaction—diffusion equations. Even though
the convergence of this technique depends mainly on the
large number of node points, computation experiences on a
microcomputer with double precision real only eight word
bites shows that the procedure converges very fast. After the
Taylor series is expanded and the corresponding iterating
procedure is constructed, the computation process is
stable. Arranging the elements in the coefficient matrix
to block matrix form, the whole coefficient matrix is easily
decomposed to lower and upper matrix, and the compact
forward and backward substitution algorithm based on the
shift of block matrixes with Gauss—Jordan full pivoting
method can perform the numerical calculation quickly.
Local convergence depends on the first trial solution,
current criteria are required to make the solution converge
to the correct results. It is suggested by the model solutions
that dissipative behaviors in a electrochemical reaction—
diffusion system might occur when the Thiele modulus is
high.
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